Expected Number of Level Crossings of a Class of Algebraic Polynomial

DIPTY RANI DHAL, Dept. of Basic Science and humanities, ITER, BBSR, ODISHA, INDIA
DR.P.K. MISHRA, Dept. of Basic Science and humanities, CET, BPUT, BBSR, ODISHA, INDIA

Abstract
This paper provides the expected number of K level crossings of a class of random algebraic polynomial of the form

$$f(t) = \sum_{k=1}^{n} \tau_{k} t^{k}$$

Let $f(t) = \sum_{k=1}^{n} \tau_{k} t^{k}$ be a random algebraic polynomial. Then the average number of level crossings of the polynomial $f(t)=K$ is asymptotic to

$$\frac{1}{\pi} \log \left(\frac{n}{K} \right) \text{ in } (-1,0) \text{ and } (0,1);$$

(i).

$$\frac{1}{2\pi} \log n \text{ in } (-\infty,1) \text{ and } (1,\infty).$$

(ii).

Hence K is any constant such that K/n tends to zero as $n \to \infty$.

Keywords: Independent identically distributed random variables, random algebraic polynomial, random algebraic equation, real roots.

Theorem 1: Let $\{a_{k}\}$ be a sequence of martingale differences with $E(a_{k})=0$,

$$E(T_{i}^{2}) \sim \Delta^{2}; \quad \left(\Delta^{2} > 0, n \to \infty\right)$$

$$E(a_{k}^{2}) \leq M, \quad \text{ (for some } \delta > 0 \text{ and } M < \infty)$$

$$\tau_{k} = a_{(k-1)+1} + a_{(k-1)+2} + \cdots + a_{(k),}$$

$$T_{i} = n^{-1/2} \tau_{i}, \quad (k=1,2,\ldots)$$

and

$$E\left[\sum_{i=1}^{n} |E(a_{k} \downarrow P_{k}) - E(a_{k}^{2})| \right] \leq B(n) \downarrow 0.$$}

Here P_{k} are the past events generated by random variables $\{a_{k,1}, a_{k,2},\ldots\}$.

$$\frac{1}{\pi} \log n \text{ in } (-\infty,1) \text{ and } (1,\infty).$$

(ii).

Hence K is any constant such that K/n tends to zero as $n \to \infty$.

Introduction

Kac [36], [37] some years back studied the number of real zeros of polynomial of the form

$$f(t) = \sum_{k=1}^{n} a_{k} t^{k} = 0$$

$$f(t) = a_{k} t^{k} = 0$$

where $(a_{0}, a_{1}, \ldots, a_{n})$ is a sequence of independent normally distributed random variables with mathematical exception zero and variance unity. He found that the average number of real zeros of a polynomial of this form in the interval $(-\infty, \infty)$ is asymptotic to $2/\pi \log n$.

From the work of Ibragimov and Masolova [31] we find that if the coefficients a_{i}'s are independent distributed random variables belonging to the domain of attraction of normal law and have zero mean then the same asymptotic relation holds good.

Farahmand [20] considered a polynomial of the form $f(t)=K$ and found that as long as K^{2}/n tends to zero for large n, the expectation of number of real zeros of the
above curve is asymptotic to
\[\frac{1}{\pi} \log \left(\frac{n}{K^2} \right) \]
in the intervals \((-1,1)\) and \((1,\infty)\) turn out to be
\[\frac{1}{2\pi} \log n \].

Sambadham [58] estimated the average number of real zeros of a random polynomial with hyperbolic elements;
\[\sum_{k=1}^{n} \tau_{kn} \cosh kn, \]
i.e.
where \((a_k)\) is a sequence of martingale differences
\[E(a_k)=0, \quad (1.1) \]
\[E(t^2k)\sim A^2, \]
\[\|E\|^{1/2} \leq M \quad (\text{for some } \delta < 0 \text{ and } M < \infty). \]

Where
\[\tau_{kn}=a_{k-1}+a_{k-2}+\ldots+a_k, \]
\[T_k=n^{-1/2} \tau_{kn} \quad (k=1,2,\ldots,n) \]
and
\[\lim_{n \to \infty} \left| \sum_{k=1}^{n} E(a_k/P_k) - E(a_k^2) \right| \leq B(n) \downarrow 0. \quad (1.2) \]

Here \(P_k\) is the past event generated by the set of random variables \(\{a_{k-1}, a_{k-2},\ldots\}\).

Here we consider an algebraic polynomial of the form
\[f(t) = \sum \tau_{kn} t^k = K, \quad (1.3) \]

Where the sequence of random variables \((a_k)\) satisfies the conditions \((1.1)\) and \((1.2)\) and \(K\) is any constant such that \(K/n \to 0\) as \(n \to \infty\). We represent by
\[EN_s(\alpha, \beta) \]
the expected number of real zeros of equation \((1.3)\) in the interval \((\alpha, \beta)\).

Proof Of The Theorem
In 1.2 we have derived the extended Kac-rice formula to be used in the proof of the theorem.

In 1.3, 1.4, 1.5 and 1.6 respectively we deal with the intervals \((0,1)\), \((1,\infty)\), \((-1,0)\) and \((-\infty,1)\) to find the asymptotic estimates of average number of roots.

1.2. Formula for \(EN_s(\alpha, \beta) \)

Let \((a_k)_{k\in N}\) be a sequence of martingale differences (md). If in this case correlations exists, then the random variables are uncorrelated. This shows that each \(\tau_{kn}\) satisfies the condition \((1.1)\) and \((1.2)\), from Serfling [72] we find that \(\tau_{kn}\) is asymptotically normal with mean zero and variance \(n\) if \(E(a_k^2)=1\). Hence \(f(t)\) is asymptotically normal. For our equation \(f(t)-K=0\), it follows from Crammer and Leadbetter [7, p-285] that
\[EN_s(\alpha, \beta) = \frac{1}{\sqrt{2\pi}} \left| \left| 1-\lambda^2 \right| \right| \Phi \left(\frac{m}{\sqrt{X}} \right) \left[2\Phi(\eta)-\eta(2\Psi(\eta)-1) \right] \cdot dt, \]
Where
\[X = \text{var} \{f(t)-K\}, \]
\[Z = \text{var} \{f'(t)\}, \]
\[\lambda = (XZ)^{-1/2} \text{cov} \{f(t)-K, f'(t)\}, \]
\[m = E\{f(t)-K\}, \]
\[\eta = Z^{-1/2} (1-\lambda^2)^{-1/2} \left\{ \gamma - \lambda m(Z/X)^{1/2} \right\}, \]
\[\gamma = E\{f'(t)\}. \]

\(\Phi\) and \(\Psi\) are standard density function and distribution functions respectively.

From these values we get
\[m = -K, \]
\[\gamma = 0, \]
\[X = X(t) = n \sum_{k=0}^{n} t^{2k}, \]
\[Z = Z(t) = n \sum_{k=1}^{n} k^{2} t^{2k-2}, \]
\[Y = Y(t) = n \sum_{k=1}^{n} K t^{2k-1}, \]
\[\lambda = -Y / \sqrt{XZ}, \]
\[\eta = -\frac{YK}{\sqrt{XZ}}. \]

Hence from (1.4),
\[\Psi(t) = \frac{1}{2} + \pi^{-1/2} \text{erf} \left(\frac{t}{\sqrt{2}} \right), \]

We have the extended Kac-Rice formula
\[
E_{X} \left(\alpha, \beta \right) = \left[\frac{\Delta^{1/2}}{\pi X} \exp \left(\frac{-ZK^{2}}{2\Delta} \right) \right] + \left[\frac{K^{2}}{\pi X^{1/2}} \exp \left(\frac{K^{2}}{2X} \right) \text{erf} \left(\frac{K}{\sqrt{2X}} \right) \right] dt
\]
\[= \int_{a}^{b} I(t) dt = \int_{a}^{b} I_{1}(t) dt + \int_{a}^{b} I_{2}(t) dt, \quad (1.5) \]

Where
\[I_{1}(t) = \frac{\Delta^{1/2}}{\pi X} \exp \left(\frac{-ZK^{2}}{2\Delta} \right) \]
\[I_{2}(t) = \left(\frac{|K|Y\sqrt{2}}{\pi X^{1/2}} \right) \exp \left(\frac{K^{2}}{2X} \right) \text{erf} \left(\frac{|K|Y}{\sqrt{2X}} \right). \]

Excepted number of roots in (0,1)

For \(t \in (0,1) \) we have the following estimates

\[X = \frac{n^{1/2} t}{1-t^{2}}, \quad (1.6) \]
\[Y = n \left[(1-t^{2})^{2} - n^{2} (1-t^{2}) \right] \quad (1.7) \]
and
\[Z = n \left[(1-t^{2})^{2} - 2n^{2} (1-t^{2}) \right]. \quad (1.8) \]

From (1.6), (1.7) and (1.8), we have
\[\Delta = \Delta(t) = \frac{n^{3} \left[(1-t^{2})^{2} - n^{2} (1-t^{2}) \right]}{(1-t^{2})^{4}} \quad (1.9) \]

Hence
\[Z = \frac{(1-t^{2})^{2} - 2n^{2} (1-t^{2}) + (1+t^{2}) \left[(1-t^{2})^{2} \right]}{n \left[(1-t^{2})^{2} - n^{2} (1-t^{2}) \right]} \]
\[\Delta \quad (1.10) \]

For large \(n \), we have
\[t^{2n-2} \left(1-t^{2} \right) ^{2} \leq \frac{4}{n^{2} e^{2}} \]

Hence from (1.10)
\[\frac{Z}{\Delta} \quad (1.11) \]

By [36]
\[\frac{\Delta^{1/2}}{\pi X} = \frac{\left[(1-t^{2})^{2} \right]^{2}}{1-t^{2}} \quad (1.12) \]

Also for all \(0 \leq t \leq 1 \), from (1.12), we have
\[\frac{\Delta^{1/2}}{X} < (2\pi-1)^{1/2} (1-t)^{1/2} \] and
\[\frac{\Delta^{1/2}}{X} < (1-t)^{-3}. \quad (1.13) \]

Thus
\[\int_{0}^{1} \frac{\Delta^{1/2}}{X} \exp \left(\frac{-KZ}{2\Delta} \right) dt \]
\[
Y \leq nt(1-t^{2n})(1-t^2)^{-2}
\]
so that
\[
\frac{Y}{X^{3/2}} \leq n^{-1/2} t(1-t^{2n})^{-1/2} (1-t^2)^{-1/2}
\]
\[
\leq n^{-1/2} t(1-e^{2})^{-1/2} (1-t^2)^{-1/2}
\]
For \(1-1/n \leq t \leq 1\), we have
\[
Y \leq \frac{n^2}{t} \sum_{k=0}^{n} t^{2k}.
\]
Hence in this range of \(t\), for sufficiently large \(n\)
\[
\frac{Y}{X^{3/2}} \leq \frac{n^{1/2}}{t} (1-t)^{-1/2} (1-t^{2n})^{-1/2}
\]
\[
\leq \frac{n^{1/2}}{t} \| (1-1/n)^{1/2} \| (1-1/n)^{2k} \| ^{1/2}
\]
\[
\leq 2 \| (1-e^{-2})^{1/2} \| .
\]
(1.16)
Also
\[
\int_{0}^{1} I_{t}(t) dt = \int_{0}^{1/4} I_{t}(t) dt + \int_{1/4}^{1} I_{t}(t) dt.
\]
Since \(\text{erf} (t) < 1\)
\[
\int_{0}^{1/4} I_{t}(t) dt \leq K \sqrt{2 \pi} (1-e^{-2})^{1/2} n^{1/2} \int_{0}^{1/4} (1-t^{1/2})^{1/2} \exp \left[\frac{K^2 (1-t^4)}{n (1-t^{2n})} \right] dt
\]
\[
\leq K \sqrt{2 \pi} (1-e^{-2})^{1/2} n^{1/2} \int_{0}^{1/4} (1-t^{1/2})^{1/2} \exp \left[\frac{K^2 (1-t^2)}{n (1-t^{2n})} \right] dt
\]
\[
\leq 2 \sqrt{2} \| (1-e^{-2})^{1/2} \| .
\]
(1.17)
\[
\text{after substituting} \quad \frac{K^2}{n} \quad \text{by} \quad u' \]
Since
From (1.14), (1.15), (1.17) and (1.18) it is observed that
\[EN_n(0,1) < \frac{\pi^{-1}}{\log(n/k)} + 0(1). \]
(1.19)

Now we proceed to obtain a lower bound for \(EN_n(0,1) \). For \(0 \leq t \leq 1 - 1/n \), from (1.10), we have
\[
\frac{1}{\Delta} \left[1 - h_n(t) \right] \leq \frac{2(1-t^2)}{n^2(1-t^2)^2 - 4t^2} < C_1 \frac{(1-t^2)}{n},
\]
(1.20)

Where \(C_1 \) is a constant.

From (1.12), we have
\[
{\Delta}^{1/2} = \frac{\left(1 - h_n(t)^2\right)^{1/2}}{1 - t^2},
\]
\[
h_n(t) = \frac{nt^{n-1} - (1-t^2)}{1-t^{2n}}.
\]

For \(0 \leq t \leq 1 - 1/n \),
\[
h_n(t) = nt^{n-1} \leq n(1 - n^{-1})^{n-1}
\]
and hence \(h_n(t) \) can be made smaller than \(e^{1/2} \) for sufficiently large \(n \) and \(e > 0 \).

Hence, for large \(n \), we have
\[
\Delta^{1/2} > \frac{(1-e)^{1/2}}{1-t^2} > \frac{(1-e)^{1/2}}{2(1-t)}.
\]
Taking \(p = C_1 K^2 \) and \(x = (1-t) \), we get
\[
EN_n(0,1) \geq \int_0^1 \frac{{\Delta}^{1/2}}{X} \exp\left(-\frac{K^2Z}{2\Delta}\right) dt
\]
\[
\geq (2\pi)^{1/2} \int_{1/2}^1 x^{-1} \exp(-px) dx
\]
\[
= (2\pi)^{1/2} \log n - (2\pi)^{1/2} \int_0^{\log(p)/p} \frac{(1-e^{-t})}{x} dt
\]
\[
+ (2\pi)^{1/2} \int_0^{\log(p)/p} \frac{(1-e^{-t})}{x} dt
\]
(1.21)

Since \((p/n) \to 0 \)
\[
\int_0^{\log(p)/p} \frac{(1-e^{-t})}{x} dt = p/n + O\left(\frac{p^2}{n^2}\right)
\]
(1.22)

and
\[
\int_0^{\log(p)/p} \frac{(1-e^{-t})}{x} dt + \frac{(1-e^{-t})}{x} dt < \log(p) + 1.
\]
(1.23)

From (1.21), (1.22) and (1.23), we see that
\[
EN_n(0,1) \geq (\pi^{-1}) \log \left(\frac{n}{K}\right) - C_2,
\]
(1.24)

(for large \(n \))

Where \(C_2 \) is a constant.

From (1.19) and (1.24), we obtained
\[
EN_n(0,1) \sim (\pi^{-1}) \log \left(\frac{n}{K}\right)
\]
(1.25)

Expected number of real zero in \((1,\infty)\)

We first find an upper estimate of \(EN_n(1,\infty) \).

For \(1<t<\infty \), we get
\[Y < \frac{n^2}{t} \sum_{i=1}^{\infty} t^{2i} = \frac{n^2 (t^{2n} - 1)}{t(t^2 - 1)}. \]

Hence
\[Y < \frac{n^2}{X^{3/2}} \left\{ \frac{n^{3/2}(t^{2n} - 1)(t^2 - 1)^{3/2}}{n^{3/2}(t^{2} - 1)(t^{2n} - 1)^{3/2}} \right\} \]
\[= \frac{n^{1/2}(t^2 - 1)^{1/2}}{(t^{2n} - 1)^{1/2}}. \]

Putting \(t = 1/x \), we get
\[Y < \frac{n^{1/2}X^2(1-x^2)^{1/2}}{(1-x^{2n})^{1/2}} \]

Also
\[\leq \frac{K}{\sqrt{2\pi}} \int_{X^{3/2}}^{\infty} \exp \left\{ -\frac{Y}{2X} \right\} \text{erf} \left\{ \frac{\sqrt{2\lambda\Delta}}{X} \right\} dx \]
\[\leq \frac{K}{\sqrt{2\pi}} \int_{X^{3/2}}^{\infty} \frac{Y(x)}{X^{3/2}} \left\{ \frac{n^{1/2}x^3}{n} \right\} dx \]
\[+ \frac{K}{\sqrt{2\pi}} \int_{X^{3/2}}^{\infty} \exp \left\{ -\frac{\sqrt{n}}{X(n-2)} \right\} \left\{ n \left(\frac{n-1}{n} \right) \right\}^{1/2}. \]

From (1.9) and (1.6), we obtain
\[\Delta = n^2 x^{-(4n-8)} \left\{ 1 - h(x) \right\} (x^{2n-1})(x^2 - 1)^{-4}, \]
(1.29)

Where \(h(x) \) is defined previously and

\[X = nx^{-2(\Delta_n)} (x^{2n-1})(x^2 - 1)^{-1}. \]
(1.30)

Hence from (1.13), (1.29) and (1.30)

\[\int_{1}^{\infty} \frac{\Delta^{1/2}}{X} \exp \left\{ -\frac{YK^2}{(2\Delta)} \right\} dt \]
(1.26)
\[< \int_{1}^{\infty} \frac{\Delta^{1/2}}{X} dt \]
(1.27)
\[= \int_{0}^{1} \frac{\Delta^{1/2}}{X} x^{-3} \]
\[= \int_{0}^{1} \frac{\Delta^{1/2}x^{-3} \exp \left\{ -\frac{Y}{x} \right\} dx + \int_{1}^{\infty} \frac{\Delta^{1/2}}{X} \exp \left\{ -\frac{Y}{x} \right\} dx \]
\[< \int_{0}^{1} \left(1 - x^3 \right) dx + \int_{1}^{\infty} \left((2n-1) \right)^{1/2} (1-x)^{-1/2} \]
\[< \frac{1}{2} \log n + o(1). \]
(1.31)

Hence

\[EN_n(1, \infty) < \frac{1}{2\pi} \log n + C_3 \]
(1.32)

Where \(C_3 \) is a constant.

Now we obtain a lower estimate of \(EN_n(1, \infty) \)

From the estimates of \(z \) and \(\Delta \), from (1.8) and (1.9) respectively, in the range of
\[0 \leq x \leq 1 - \frac{1}{n} \]
\[Z = \frac{x^{2n-4}(1-x^2)(1+x^2)(1+x^{n}) + n^2(1-x^2)^2 - 2n(1-x^2)}{n^2(1-x^2)} \]
\[\frac{\Delta}{\Delta} \frac{n^2(1-x^2)(1+x^2)(1+x^{n}) + n^2(1-x^2)^2 - 2n(1-x^2)}{n^2(1-x^2)} \]
\[(as \ h(1/1) = 1) \]
\[< \frac{x^{2n-4}(1-x^2)(1+x^2)(1+x^{n}) + n^2(1-x^2)^2 - 2n(1-x^2)}{n^2(1-x^2)(1+x^2)(1+x^{n}) + n^2(1-x^2)^2 - 2n(1-x^2)} \]
\[< \frac{x^{2n-4}(1-x^2)(1+x^2)(1+x^{n}) + n^2(1-x^2)^2 - 2n(1-x^2)}{n^2(1-x^2)^2 - 2n(1-x^2)} \]
\[< \frac{x^{2n-4}(1-x^2)(1+x^2)(1+x^{n}) + n^2(1-x^2)^2 - 2n(1-x^2)}{n^2(1-x^2)^2 - 2n(1-x^2) + 1/n} \]
\[< \frac{x^{2n-4}(1-x^2)(1+x^2)(1+x^{n}) + n^2(1-x^2)^2 - 2n(1-x^2)}{n^2(1-x^2)^2 - 2n(1-x^2) + 1/n} \]
\[< \frac{x^{2n-4}(1-x^2)(1+x^2)(1+x^{n}) + n^2(1-x^2)^2 - 2n(1-x^2)}{n^2(1-x^2)^2 - 2n(1-x^2) + 1/n} \]
< 5nx^{2n-4}(1-x^2)^3, \quad (1.33)

For sufficiently large n.

Also for 0 \leq x \leq 1 - 1/n

x^{n-4}(1-x^2)^2 \leq \frac{9}{n^2e^2}.

Let s'' = \frac{9K^2}{ne^2}

Using the result of Kac [36], we have

$$\int_{X}^{\Delta^{1/2}} \left\{ \frac{ZK^2}{2X} \right\} dx$$

$$\geq \int_{0}^{1-1/n} (1-x)^{-1} \exp\left[-S''e^2n^2x^{2n-4}(1-x^2)^{1/18}\right] dx$$

$$\geq \int_{0}^{1-1/n} (1-x)^{-1} \exp\left[-S''x^n(1-x^2)/2\right] dx$$

$$\geq \frac{1}{2} \int_{0}^{1-1/n} (1-x)^{-1} \exp\left[-S''x^n(1-x)\right] dx. \quad (1.34)$$

For 0 \leq x \leq 1 - 1/n

\exp\left\{ -S'' x^n(1-x) \right\}

= 1 - S'' x^n(1-x) + O(S''^2/e^2n^2).

Also in this range

\max \left\{ x^n(1-x) \right\} < \frac{1}{en}.

Hence from (7.34), we obtain

\begin{align*}
\int_{X}^{\Delta^{1/2}} \exp\left\{ -\frac{ZK^2}{2\Delta} \right\} dx \\
\geq \frac{1}{2} \int_{0}^{1-1/n} (1-x)^{-1} dx - \frac{1}{2} \int_{0}^{1-1/n} S'' x^n dx \\
+ \frac{1}{2} \int_{0}^{1-1/n} O(S''/n^2) dx
\end{align*}

= \frac{1}{2} \log n + O(S''/n)

= \frac{1}{2} \log n + O(K^2/n^2)

Hence

$$\mathcal{E}(1,\infty) \geq \frac{1}{2\pi} \log n + O(K^2/n^2) \quad (1.35)$$

From (7.31) and (7.35), we have

$$\mathcal{E}(1,\infty) \sim \frac{1}{2\pi} \log n. \quad (1.36)$$

1.5. Expected number of real zeros in (-1,0)

Let y = t

Then for 0 < y < 1 - 1/n

$$\frac{K^2}{X(t)} = \frac{K^2(1-y^2)}{1-y^n} > K^2(1-y^2),$$

$$Y(t) = -ny^{2n+1} + y^{2n+1} + ny^{2n-1} - y$$

and

Now

$$\int_{\{X(t)^{1/2}\}}^{0} \exp\left\{ -\frac{K^2}{2X(t)} \right\} dt$$

$$= \int_{\{X(t)^{1/2}\}}^{0} \left(-ny^{2n+1} + y^{2n+1} \right) \exp\left\{ -\frac{K^2}{2X(y)} \right\} dy$$

$$\leq \int_{\{X(t)^{1/2}\}}^{0} \left(-ny^{2n+1} + y^{2n+1} - y \right) \exp\left\{ -\frac{K^2}{2X(y)} \right\} dy$$

Then using the procedure described in (1.17) and (1.18), we have

$$\int_{\{X(t)^{1/2}\}}^{0} \exp\left\{ -\frac{K^2}{2X(t)} \right\} dt$$

$$\leq 2\sqrt{\pi} \left(1-\epsilon^{-2} \right)^{-1/2} + \frac{2\sqrt{\pi}}{\pi} \left| K \right| n^{-1/2} \left(1-\epsilon^{-2} \right)^{-1/2} \exp\left\{ -\frac{K^2}{2n^2} \right\}. \quad (1.37)$$
Procedure similar to that shown in (1.14) shows that
\[
0 \leq \int_{-1/n}^{1/n} I_n(t) dt = \int_{0}^{1/n} I_n(y) dy \leq \log \left(\frac{n}{k} \right) + O(1).
\]
Also from (1.15), we have
\[
\int_{0}^{1/n} \frac{1}{t} \exp \left\{ - \frac{Z(t)K^2}{2\Delta(t)} \right\} dt \leq \sqrt{2} \left(2 - \frac{1}{n} \right)^{1/2}.
\]
Hence from (1.37), (1.38) and (1.39), we have
\[
\text{EN}_n(-1,0) \leq \frac{1}{\pi} \log \left(\frac{n}{k} \right) + O(1).
\]
From the previous discussions, we have also
\[
\text{EN}_n(-1,0) > \int_{-1/n}^{1/n} I_n(t) dt = \int_{0}^{1/n} I_n(y) dy > \pi^{-1} \log \left(\frac{n}{k} \right) + O(1)
\]
(1.40)
1.6. Expected number of zeros in (-∞,1)

In order to evaluate \(\text{EN}_n(-\infty,-1)\), we let \(y=-1/t\).

Then
\[
\int_{-\infty}^{-1/n} I_n(t) dt = \int_{0}^{1/n} I_n(y) dy = \sqrt{\pi \Delta(-1/y)} \exp \left\{ \frac{Z(-1/y)K^2}{2\Delta(-1/y)} \right\} \frac{dy}{y^{3/2}}.
\]
Now
\[
\Delta(-1/y) = \frac{1}{y^{4n-4}(1-y^2)} \left\{ \frac{(1-y^2)^2}{(1-y^2)^2} - n^2 y^{2n-2} \right\}
\]
(1.38)
\[
\frac{ny^{n-1}}{1-y^2} \to 0 ; \text{ as } n \to \infty,
\]
(1.41)
But
\[
\Delta(t) = \Delta(-1/y) > \frac{(1-y^2)^2}{y^{4n-4}(1-y^2)} (1-\varepsilon)
\]
(1.42)
Since
\[
\frac{\sqrt{\Delta(t)}}{X(t)} = \frac{\sqrt{\Delta(-1/y)}}{X(-1/y)} > \frac{y^2 (1-\varepsilon)^{1/2}}{1-y^2}.
\]
Also we can show that
\[
\frac{Z(t)}{\Delta(t)} < 5 n^{3/2} y^{2n-4} (1-y^2)^3.
\]
Hence as in (1.36) it is easy to conclude that
\[
\text{EN}_n(-\infty,-1) \geq \frac{1}{2\pi} \log n + O \left(\frac{K^2}{n^2} \right)
\]
In order to estimate an upper bound for \(\text{EN}_n(-\infty,-1)\), we apply procedure described in 1.3 after putting \(y=-1/t\).

Thus
\[
\int_{0}^{1} I_2(y) \frac{dy}{y^2} < \frac{n^{1/2} |K|}{\sqrt{2\pi (n - 2)}} \exp \left(-\sqrt{n}\right),
\]
and
\[
\int_{1}^{n} I_2(y) \frac{dy}{y^2} < \frac{n^{1/2} |K|}{\sqrt{2\pi (n - 2)}} \left\{ n \left(n - \frac{1}{\sqrt{n}} \right) \right\}^{-1/2}.
\]
So
\[
\int_{-\infty}^{1} I_2(t) dt = o(1).
\] (1.44)

Like (1.13), we have
\[
\int_{-\infty}^{1} I_2(t) dt \leq \frac{1}{\pi} \int_{-\infty}^{1} \frac{\sqrt{\Delta(y)}}{y^2} dy
\]
\[
< \frac{1}{2\pi} \log n + O(1).
\] (1.45)

From (1.44) and (1.45), we have
\[
\text{EN}_n(-\infty, -1) \sim \frac{1}{2\pi} \log n
\] (1.46)

This completes the proof of the theorem.

References

